Categorias
Artigos

Os humanos inventaram a matemática ou ela é uma parte fundamental da existência?

Por Julio Batista

Créditos: FlashMovie / Getty Images.

Por Sam Baron
Publicado no The Conversation

Muitas pessoas pensam que a matemática é uma invenção humana. Para essa forma de pensar, a matemática é como uma linguagem: ela pode descrever coisas reais no mundo, mas não “existe” fora da mente das pessoas que a usam.

Porém, a escola de pensamento pitagórica da Grécia antiga tinha uma visão diferente. Seus proponentes acreditavam que a realidade é fundamentalmente matemática.

Mais de 2.000 anos depois, filósofos e físicos estão começando a levar essa ideia a sério.

Como argumento em um novo estudo, a matemática é um componente essencial da natureza que dá estrutura ao mundo físico.

Abelhas e hexágonos

As abelhas nas colmeias produzem favos hexagonais. Por quê?

De acordo com a ‘conjectura do favo de mel’ na matemática, os hexágonos são a forma mais eficiente para alinhar o plano. Se você deseja cobrir totalmente uma superfície usando ladrilhos de formato e tamanho uniformes, enquanto mantém o comprimento total do perímetro no mínimo, hexágonos são a forma ideal a ser usada.

Charles Darwin concluiu que as abelhas evoluíram para usar essa forma porque ela produz as maiores células para armazenar mel para a menor entrada de energia para a produção de cera.

A conjectura do favo de mel foi proposta pela primeira vez na antiguidade, mas só foi provada em 1999 pelo matemático Thomas Hales.

Cigarras e números primos

Aqui está outro exemplo. Existem duas subespécies das chamadas cigarras periódicas norte-americanas que vivem a maior parte de suas vidas no solo. Então, a cada 13 ou 17 anos (dependendo da subespécie), as cigarras surgem em grandes enxames por um período de cerca de duas semanas.

Por que são 13 e 17 anos? Por que não 12 e 14? Ou 16 e 18?

Uma explicação apela para o fato de que 13 e 17 são números primos.

Imagine que as cigarras têm uma variedade de predadores que também passam a maior parte de suas vidas no solo. As cigarras precisam sair do solo quando seus predadores estão adormecidos.

Suponha que existam predadores com ciclos de vida de 2, 3, 4, 5, 6, 7, 8 e 9 anos. Qual é a melhor maneira de evitar todos eles?

P1 – P9 representam predadores cíclicos. A linha numérica representa anos. As lacunas destacadas mostram como as cigarras de 13 e 17 anos conseguem evitar seus predadores. Crédito: Sam Baron.

Bem, compare um ciclo de vida de 13 anos e um ciclo de vida de 12 anos. Quando uma cigarra com um ciclo de vida de 12 anos sai da terra, os predadores de 2, 3 e 4 anos também estarão fora da terra, porque 2, 3 e 4 se dividem igualmente em 12.

Quando uma cigarra com um ciclo de vida de 13 anos sai do solo, nenhum de seus predadores sairá do solo, porque nenhum de 2, 3, 4, 5, 6, 7, 8 ou 9 se divide igualmente em 13. O mesmo é válido para 17.

Parece que essas cigarras evoluíram para explorar fatos básicos sobre os números.

Criação ou descoberta?

Assim que começarmos a procurar, será fácil encontrar outros exemplos. Desde a forma de filmes de sabão ao design de engrenagens em motores, até a localização e o tamanho das lacunas nos anéis de Saturno, a matemática está em toda parte.

Se a matemática explica tantas coisas que vemos ao nosso redor, então é improvável que a matemática seja algo que criamos. A alternativa é que os fatos matemáticos sejam descobertos: não apenas por humanos, mas por insetos, bolhas de sabão, motores de combustão e planetas.

O que Platão pensava?

Mas se estamos descobrindo algo, o que é?

O antigo filósofo grego Platão tinha uma resposta. Ele achava que a matemática descreve objetos que realmente existem.

Para Platão, esses objetos incluíam números e formas geométricas. Hoje, podemos adicionar objetos matemáticos mais complicados, como grupos, categorias, funções, campos e anéis à lista.

Platão também defendia que os objetos matemáticos existem fora do espaço e do tempo. Mas tal visão apenas aprofunda o mistério de como a matemática explica qualquer coisa.

A explicação envolve mostrar como uma coisa no mundo depende da outra. Se os objetos matemáticos existem em um reino separado do mundo em que vivemos, eles não parecem capazes de se relacionar com nada físico.

Entrando no pitagorismo

Os antigos pitagóricos concordavam com Platão que a matemática descreve um mundo de objetos. Mas, ao contrário de Platão, eles não achavam que os objetos matemáticos existiam além do espaço e do tempo.

Em vez disso, eles acreditavam que a realidade física é feita de objetos matemáticos da mesma forma que a matéria é feita de átomos.

Se a realidade é feita de objetos matemáticos, é fácil ver como a matemática pode desempenhar um papel na explicação do mundo ao nosso redor.

Na última década, dois físicos montaram defesas significativas da posição pitagórica: o cosmologista sueco-americano Max Tegmark e a física e filósofa australiana Jane McDonnell.

Tegmark argumenta que a realidade é apenas um grande objeto matemático. Se isso parece estranho, pense na ideia de que a realidade é uma simulação. Uma simulação é um programa de computador, que é uma espécie de objeto matemático.

A visão de McDonnell é mais radical. Ela pensa que a realidade é feita de objetos matemáticos e mentes. A matemática é como o Universo, que é consciente, passa a se conhecer.

Defendo uma visão diferente: o mundo tem duas partes, matemática e matéria. A matemática dá forma à matéria e a matéria dá substância à matemática.

Os objetos matemáticos fornecem uma estrutura para o mundo físico.

O futuro da matemática

Faz sentido que o pitagorismo esteja sendo redescoberto na física.

No século passado, a física tornou-se cada vez mais matemática, voltando-se para campos de investigação aparentemente abstratos, como a teoria dos grupos e a geometria diferencial, em um esforço para explicar o mundo físico.

À medida que a fronteira entre a física e a matemática se confunde, fica mais difícil dizer quais partes do mundo são físicas e quais são matemáticas.

Mas é estranho que o pitagorismo tenha sido negligenciado pelos filósofos por tanto tempo.

Eu acredito que isso está prestes a mudar. Chegou a hora de uma revolução pitagórica, que promete alterar radicalmente nossa compreensão da realidade.

Categorias
Estudos

ENIGMA: Matemáticos acham ‘número de Deus’ para resolver cubo mágico

 

 

imageUm grupo de pesquisadores americanos concluiu que é possível resolver qualquer combinação do quebra-cabeças conhecido como “cubo mágico” em apenas 20 movimentos ou menos. O chamado “número de Deus” é o mais baixo desde que a busca pela solução mais rápida para o colorido enigma começou, há 30 anos.

Em 1981, o matemático Morwen Thistlethwaite chegou a um algoritmo capaz de resolver qualquer posição do cubo mágico em 52 movimentos. Desde então, o número vem sendo reduzido – a última vez, em 2008, para 22.

“Sabemos ao certo que o número mágico é 20”, disse à BBC o matemático da Kent State University, Morley Davidson. Ele disse, entretanto, que a maioria das posições requer entre 15 e 19 movimentos.

Segundo ele, das cerca de 43 bilhões de combinações possíveis com o cubo, 100 milhões podem ser resolvidas com exatos 20 movimentos. O restante, com menos.

“Levou 15 anos após a introdução do cubo para encontrar a primeira combinação que provavelmente requeria apenas 20 movimentos para ser solucionada”, disseram os pesquisadores, no site em que os resultados foram divulgados. “É apropriado que, 15 anos mais tarde, provemos que 20 movimentos são necessários para qualquer combinação.”

Algoritmos complexos

c

Também conhecido como cubo de Rubik, o cubo mágico foi inventando em 1974 pelo arquiteto húngaro Erno Rubik. Licenciado como brinquedo, o quebra-cabeças já vendeu desde então mais de 400 milhões de unidades no mundo, tornando-se um dos passatempos mais vendidos em escala global.

As equações para resolver os enigmas no menor número de movimentos são demasiado complexas para serem memorizadas por um mortal comum. Em geral, são necessários computadores e até supercomputadores.

Em competições internacionais, o recorde por resolver o cubo mágico 3 x 3 x 3 mais rapidamente – mas não necessariamente no menor número de movimentos – pertence ao estudante holandês Erik Akkersdijk, que encontrou uma solução em 7 minutos e 8 segundos.

Já o “número de Deus” é assim chamado porque os pesquisadores assumem que um ser onisciente usaria este algoritmo para resolver o problema. As pesquisas para definir o algoritmo da equação “divina” usaram um arsenal de capacidade informática providenciada pela gigante de tecnologia Google – que não divulga detalhes dos sistemas de computação oferecidos para a pesquisa, concluída em semanas.

Cálculos

Os pesquisadores dividiram todas as possibilidades em 2,2 bilhões de grupos, cada um contendo 20 bilhões de posições. Para facilitar a conta, eles eliminaram combinações duplicadas e usaram simetria para identificar outras combinações similares. Assim, o número de grupos de 20 bilhões de combinações caiu para 56 milhões.

Para processar todos os dados que a pesquisa requeria, seriam necessários 35 anos de trabalho de um computador normal, disse Davidson. “Para mim, achar o ”número de Deus” é como um círculo”, disse Davidson. “O cubo mágico é um clássico dos anos 1980, época em que eu cresci, e uma das razões por que entrei na matemática.”

Ele disse que, agora, a equipe pode continuar estudando problemas matemáticos com o cubo mágico, talvez em sua versão 4 x 4 x 4. “É a popularidade universal do quebra-cabeças”, justificou. “É provavelmente o quebra-cabeças mais popular da história humana.” Fonte: Terra

06-06-16 013

Rev. Ângelo Medrado, Bacharel em Teologia, Doutor em Novo Testamento, referendado pela International Ministry Of Restoration-USA e Multiuniversidade Cristocêntrica é presidente do site Primeira Igreja Virtual do Brasil e da Igreja Batista da Restauração de Vidas em Brasília DF., ex-maçon, autor de diversos livros entre eles: Maçonaria e Cristianismo, O cristão e a Maçonaria, A Religião do antiCristo, Vendas alto nível, com análise transacional e Comportamento Gerencial.