Tempestade desenterra estátua romana em Israel

 

DA BBC BRASIL

Uma tempestade que atingiu a cidade israelense de Ashkelon revelou uma estátua romana que estava enterrada havia séculos.

Autoridade de Antiguidades de Israel

Estátua descoberta em Ashkelon, em Israel

Estátua descoberta em Ashkelon, em Israel

A escultura feminina de mármore branco foi encontrada por um transeunte depois que uma tempestade na costa israelense derrubou parte de um rochedo.

A obra tem 1,2 metro de altura e pesa 200 kg. Segundo a autoridade que cuida das antiguidades de Israel, a estátua tem entre 1.800 e 2.000 anos.

A porta-voz da entidade, Yoli Schwartz, disse que, embora sem os braços e a cabeça, a estátua conta com "sandálias delicadamente esculpidas" e intactas.

O órgão de antiguidades já levou o achado para uma série de testes e estudos.

Por outro lado, a tempestade danificou outros sítios arqueológicos, como o porto romano de Caesarea. As autoridades devem visitar a área para avaliar os danos.

O ossuário do irmão de Jesus é verdadeiro

Ela pesa 25 quilos. Tem 50 centímetros de comprimento por 25 centímetros de altura. E está, indiretamente, no banco dos réus de um tribunal de Jerusalém desde 2005. A discussão em torno de uma caixa mortuária com os dizeres “Tiago, filho de José, irmão de Jesus” nasceu em 2002, quando o engenheiro judeu Oded Golan, um homem de negócios aficionado por antiguidades, revelou o misterioso objeto para o mundo. A possibilidade da existência de um depositário dos restos mortais de um parente próximo de Jesus Cristo agitou o circuito da arqueologia bíblica. Seria a primeira conexão física e arqueológica com o Jesus do Novo Testamento. Conhecido popularmente como o caixão de Tiago, a peça teve sua veracidade colocada em xeque pela Autoridade de Antiguidades de Israel (IAA). Em dezembro de 2004, Golan foi acusado de falsificador e a Justiça local entrou no imbróglio. No mês passado, porém, o juiz Aharon Far¬kash, responsável por julgar a suposta fraude cometida pelo antiquário judeu, encerrou o processo e acenou com um veredicto a favor da autenticidade do objeto. Também recomendou que o IAA abandonasse a defesa de falsificação da peça. “Vocês realmente provaram, além de uma dúvida razoável, que esses artefatos são falsos?”, questionou o magistrado. Nesses cinco anos, a ação se estendeu por 116 sessões. Foram ouvidas 133 testemunhas e produzidas 12 mil páginas de depoimentos.
Especialista em arqueologia pela Universidade Hebraica de Jerusalém, Rodrigo Pereira da Silva acredita que todas as provas de que o ossuário era falso caíram por terra. “A paleografia mostrou que as letras aramaicas eram do primeiro século”, diz o professor do Centro Universitário Adventista de São Paulo (Unasp). “A primeira e a segunda partes da inscrição têm a mesma idade. E o estudo da pátina indica que tanto o caixão quanto a inscrição têm dois mil anos.” O professor teve a oportunidade de segurá-lo no ano passado, quando o objeto já se encontrava apreendido no Rockfeller Museum, em Jerusalém.
Durante o processo, peritos da IAA tentaram desqualificar o ossuário, primeiro ao justificar que a frase escrita nele em aramaico seria forjada. Depois, mudaram de ideia e se ativeram apenas ao trecho da relíquia em que estava impresso “irmão de Jesus” – apenas ele seria falso, afirmaram.

A justificativa é de que, naquele tempo, os ossuários ou continham o nome da pessoa morta ou, no máximo, também apresentavam a filiação dela. Nunca o nome do irmão. Professor de história das religiões, André Chevitarese, da Universidade Federal do Rio de Janeiro, levanta a questão que aponta para essa desconfiança. “A inscrição atribuiria a Tiago uma certa honra e diferenciação por ser irmão de Jesus. Como se Jesus já fosse um pop¬star naquela época”, diz ele. Discussões como essa pontuaram a exposição de cerca de 200 especialistas no julgamento. A participação de peritos em testes de carbono-14, arqueologia, história bíblica, paleografia (análise do estilo da escrita da época), geologia, biologia e microscopia transformou o tribunal israelense em um palco de seminário de doutorado. Golan foi acusado de criar uma falsa pátina (fina camada de material formada por microorganismos que envolvem os objetos antigos). Mas o próprio perito da IAA, Yuval Gorea, especializado em análise de materiais, admitiu que os testes microscópicos confirmavam que a pátina onde se lê “Jesus” é antiga. “Eles perderam o caso, não há dúvida”, comemorou Golan.
O ossuário de Tiago, que chegou a ser avaliado entre US$ 1 milhão e US$ 2 milhões, é tão raro que cerca de 100 mil pessoas esperaram horas na fila para vê-lo no Royal Ontario Museum, no Canadá, onde foi exposto pela primeira vez, em 2002. Agora que a justiça dos homens não conseguiu provas contra sua autenticidade, e há chances de ele ser mesmo uma relíquia de um parente de Jesus, o fascínio só deve aumentar.
(IstoÉ)

 

Nota: Na verdade, esse assunto deveria ser capa da IstoÉ, mas preferiram falar sobre “sedução”. Estaria a mídia tão seduzida pelo naturalismo/secularismo que prefere não destacar matérias que confirmam fatos relacionados com o cristianismo? Isso mereceria também reportagem de capa naSuperinteressante ou na Veja, não acha? É esperar para ver…[MB]

Instituto de Nova York exibe lições de matemática sumeriana

 

PUBLICIDADE

NICHOLAS WADE
DO "THE NEW YORK TIMES"

Papiro, pergaminho, papel, fita de vídeo, DVD e Blu-ray. Muito tempo depois que esses materiais tenham virado pó, a primeira mídia de gravação, a tabuleta de argila cuneiforme da antiga Mesopotâmia, ainda durará.

Treze das tabuletas estão em exibição no Instituto para o Estudo do Mundo Antigo, que faz parte da Universidade de Nova York.

Muitos são exercícios de alunos que estavam em processo de aprendizagem para se tornarem escribas. Eles dominavam a matemática com base em textos escritos em sumeriano, uma língua que mesmo naquela época já estava morta havia muito tempo. Já os alunos falavam acadiano, uma língua semita que não tem relação com o sumeriano. Ambas tinham escrita cuneiforme, feita por objetos em formato de cunha.

A matemática suméria era um sistema sexagesimal, ou seja, se baseava no número 60. O sistema "é impressionante por sua originalidade e simplicidade", comentou o matemático Duncan J. Melville, da Saint Lawrence University (EUA), durante a abertura da exposição.

Uma tabuada de multiplicação de 59 x 59 pode não parecer simples e é, de fato, grande demais para ser memorizada. Então as tabuletas eram necessárias para serem consultadas em situações especiais. Mas os números cuneiformes são simples de escrever, pois cada um é uma combinação de apenas dois símbolos, de 1 e 10.

Não se conhece ao certo o motivo pelo qual os sumérios escolheram o número 60 como base para seu sistema numérico.

A ideia parece ter se desenvolvido a partir de um sistema anterior mais complexo, conhecido a partir do ano 3.200 a.C., no qual as posições de um número se alternavam entre 6 e 10 como bases.

West Semitic Research/Reprodução

Tablete que contém diagrama geométrico está exposto com outras raridades de cálculo matemático

Tablete que contém diagrama geométrico está exposto com outras raridades de cálculo matemático

TABULETAS FAMOSAS

O notável conhecimento matemático dos babilônios foi revelado pelo matemático austríaco Otto E. Neugebauer, que morreu em 1990. Desde então, estudiosos se dedicam à tarefa de entender como o conhecimento era usado. Os itens em exposição foram retirados das coleções arqueológicas das universidades de Columbia, Yale e Pensilvânia.

Eles incluem duas tabuletas famosas, conhecidas como YBC 7289 e Plimpton 322, que desempenharam um papel central na reconstrução da matemática babilônica.

A YBC 7289 é um pequeno disco de argila contendo um rabisco de um quadrado e suas diagonais. Ao lado de uma das diagonais está escrito 1,24,51,10 –um número sexagesimal que corresponde ao número decimal 1,41421296. Sim, a raiz quadrada de 2. Na verdade, é uma aproximação, muito boa por sinal, do valor real: 1,41421356.

Abaixo está sua recíproca, a resposta para o problema de calcular a diagonal de um quadrado cujos lados têm 0,5 unidade. Isso leva à questão de se os babilônios tinham descoberto o teorema de Pitágoras 1.300 anos antes dele.

Nenhuma tabuleta traz a conhecida equação algébrica, que diz que os quadrados dos dois lados menores de um triângulo retângulo são iguais ao quadrado da hipotenusa. Mas a Plimpton 322 contém colunas de números que parecem ter sido usadas no cálculo dos triplos de Pitágoras, conjuntos de números que correspondem aos lados e hipotenusas de um triângulo retângulo, como 3, 4 e 5.

Outras tabuletas trazem listas de problemas práticos, como calcular a largura de um canal, de acordo com informações sobre suas outras dimensões, o custo de escavá-lo e a remuneração diária de um trabalhador.

Em algumas tabuletas, as respostas são definidas sem nenhuma explicação, dando a impressão de que serviam para que o dono se mostrasse por aí, fazendo-o parecer um acadêmico.